Wednesday, April 15, 2009

Electrostatic Generator 2

Friction Operation
The presence of surface charge imbalance means that the objects will exhibit attractive or repulsive forces. This surface charge imbalance, which leads to static electricity, can be generated by touching two differing surfaces together and then separating them due to the phenomena of contact electrification and the triboelectric effect. Rubbing two non-conductive objects generates a great amount of static electricity. This is not just the result of friction; two non-conductive surfaces can become charged by just being placed one on top of the other. Since most surfaces have a rough texture, it takes longer to achieve charging through contact than through rubbing. Rubbing objects together increases amount of adhesive contact between the two surfaces. Usually insulators, e.g., substances that do not conduct electricity, are good at both generating, and holding, a surface charge. Some examples of these substances are rubber, plastic, glass, and pith. Conductive objects in contact generate charge imbalance too, but retain the charges only if insulated. The charge that is transferred during contact electrification is stored on the surface of each object. Note that the presence of electric current does not detract from the electrostatic forces nor from the sparking, from the corona discharge, or other phenomena. Both phenomena can exist simultaneously in the same system.

INFLUENCE MACHINES History
Frictional machines were, in time, gradually superseded by the second class of instrument mentioned above, namely, influence machines. These operate by electrostatic induction and convert mechanical work into electrostatic energy by the aid of a small initial charge which is continually being replenished and reinforced. The first suggestion of an influence machine appears to have grown out of the invention of Volta's electrophorus. The electrophorus is a single-plate capacitor used to produce imbalances of electric charge via the process of electrostatic induction. Abraham Bennet, the inventor of the gold leaf electroscope, described a "doubler of electricity" (Phil. Trans., 1787), as a device similar to the electrophorus, but that could amplify a small charge by means of manual operations with three insulated plates, in order to make it observable in an electroscope. Erasmus Darwin, B. Wilson, G. C. Bohnenberger, and (later, 1841) J. C. E. Péclet developed various modifications of Bennet's device. In 1788, William Nicholson proposed his rotating doubler, which can be considered as the first rotating influence machine. His instrument was described as "an instrument which by turning a winch produces the two states of electricity without friction or communication with the earth". (Phil. Trans., 1788, p. 403) Nicholson later described a "spinning condenser" apparatus.

Others, including T. Cavallo (who developed the "Cavallo multiplier", a charge multiplier using simple addition, in 1795), John Read, Charles Bernard Desormes, and Jean Nicolas Pierre Hachette, developed further various forms of rotating doublers. In 1798, The German scientist and preacher Gottlieb Christoph Bohnenberger, described the Bohnenberger machine, along with several other doublers of Bennet and Nicholson types in a book. The most interesting of these were described in the "Annalen der Physik" (1801). Giuseppe Belli, in 1831, developed a simple symmetrical doubler which consisted of two curved metal plates between which revolved a pair of plates carried on an insulating stem. It was the first symmetrical influence machine, with identical structures for both terminals. This apparatus was similar to Lord Kelvin's "replenisher" (1867). Lord Kelvin also devised a combined influence machine and electromagnetic machine, commonly called a mouse mill, for electrifying the ink in connection with his siphon recorder. Lord Kelvin also developed, between 1858 and 1867, a water-drop electrostatic generator, which he called the "water-dropping condenser".



Holtz's influence machine.

In 1860, C. F. Varley patented a more modern type of influence machine. Between 1864 and 1880, W. T. B. Holtz constructed and described a large number of influence machines which were considered the most advanced developments of the time. In one form, the Holtz machine consisted of a glass disk mounted on a horizontal axis which could be made to rotate at a considerable speed by a multiplying gear, interacting with induction plates mounted in a fixed disk close to it. In 1865, August J. I. Toepler developed an influence machine that consisted of two disks fixed on the same shaft and rotating in the same direction. In 1868, the Schwedoff machine had a curious structure to increase the output current. Also in 1868, several mixed friction-influence machine were developed, including the Kundt machine and the Carré machine. In 1866, the Piche machine (or Bertsch machine) was developed. In 1869, H. Julius Smith received the American patent for a portable and airtight device that was designed to ignite powder. Also in 1869, sectorless machines in Germany were investigated by Poggendorff.

The action and efficiency of influence machines were further investigated by F. Rossetti, A. Righi, and F. W. G. Kohlrausch. E. E. N. Mascart, A. Roiti, and E. Bouchotte also examined the efficiency and current producing power of influence machines. In 1871, sectorless machines were investigated by Musaeus. In 1872, Righi's electrometer was developed and was one of the first antecedents of the Van de Graaff generator. In 1873, Leyser developed the Leyser machine, a variation of the Holtz machine. In 1880, Robert Voss (a Berlin instrument maker) devised a form of machine in which he claimed that the principles of Toepler and Holtz were combined. The same structure become also known as the Toepler-Holtz machine. In 1878, the British inventor James Wimshurst started his studies about electrostatic generators, improving the Holtz machine, in a powerful version with multiple disks. The classical Wimshurst machine, that become the most popular form of influence machine, was reported to the scientific community by 1883, although revious machines with very similar structures were previously described by Holtz and Musaeus. In 1885, one of the largest-ever Wimshurst machines was built in England (it is now at the Chicago Museum of Science and Industry). In 1887, Weinhold modified the Leyser machine with a system of vertical metal bar inductors with wooden cylinders close to the disk for avoiding polarity reversals. M. L. Lebiez described the Lebiez machine, that was essentially a simplified Voss machine (L'Électricien, April 1895, pp. 225-227). In 1894, Bonetti[3] designed a machine with the structure of the Wimshurst machine, but without metal sectors in the disks. This machine is significantly more powerful than the sectored version, but it must usually be started with an externally-applied charge.

In 1898, the Pidgeon machine was developed with a unique setup by W. R. Pidgeon. In October 28 of that year, Pidgeon presented this machine to the Physical Society after several years of investigation into influence machines (beginning at the start of the decade). The device was later reported in the Philosophical Magazine (Dec. 1898, pg. 564) and the Electrical Review (Vol. XLV, pg. 748). A Pidgeon machine possesses fixed inductors arranged in a manner that increases the electrical induction effect (and its electrical output is at least double that of typical machines of this type [except when it is overtaxed]). The essential features of the Pidgeon machine are, one, the combination of the rotating support and the fixed support for inducing charge, and, two, the improved insulation of all parts of the machine (but more especially of the generator's carriers). Pidgeon machines are a combination of a Wimshurst Machine and Voss Machine, with special features adapted to reduce the amount of charge leakage. Pidgeon machines excite themselves more readily than the best of these types of machines. In addition, Pidgeon investigated higher current "triplex" section machines (or "double machines with a single central disk") with enclosed sectors (and went on to receive British Patent 22517 (1899) for this type of machine).

Multiple disk machines and "triplex" electrostatic machines (generators with three disks) were also developed extensively around the turn of the century. In 1900, F. Tudsbury discovered that enclosing a generator in a metallic chamber containing compressed air, or better, carbon dioxide, the insulating properties of compressed gases enabled a greatly improved effect to be obtained owing to the increase in the breakdown voltage of the compressed gas, and reduction of the leakage across the plates and insulating supports. In 1903, Alfred Wehrsen patented an ebonite rotating disk possessing embedded sectors with button contacts at the disk surface. In 1907, Heinrich Wommelsdorf reported a variation of the Holtz machine using this disk and inductors embedded in celluloid plates (DE154175; "Wehrsen machine"). Wommelsdorf also developed several high-performance electrostatic generators, of which the best known were his "Condenser machines" (1920). These were single disk machines, using disks with embedded sectors that were accessed at the edges.

References:
  1. http://en.wikipedia.org
  2. Schiffer, Michael Brian (2003). Bringing the Lightning Down: Benjamin Franklin and Electrical Technology in the Age of Enlightenment. Univ. of California Press. ISBN 0520248295. http://books.google.com/books?id=QQuk6bH2apcC&printsec=frontcover&vq=electrostatic&dq=otto+guericke&lr=&as_brr=0.,p.18-19
  3. Hauksbee, Francis (1709). Psicho-Mechanical Experiments On Various Subjects. R. Brugis.
  4. http://www.coe.ufrj.br/~acmq/bonetti.html Instructions for building a Bonetti machine

Monday, April 13, 2009

Electrostatic Generator 1

An electrostatic generator, or electrostatic machine, is a mechanical device that produces static electricity, or electricity at high voltage and low continuous current. The knowledge of static electricity dates back to the earliest civilizations, but for millennia it remained merely an interesting and mystifying phenomenon, without a theory to explain its behavior and often confused with magnetism. By the end of the 17th Century, researchers had developed practical means of generating electricity by friction, but the development of electrostatic machines did not begin in earnest until the 18th century, when they became fundamental instruments in the studies about the new science of electricity. Electrostatic generators operate by using manual (or other) power to transform mechanical work into electric energy. They develop electrostatic charges of opposite signs rendered to two conductors, using only electric forces.

Description
Electrostatic machines are typically used in science classrooms to safely demonstrate electrical forces and high voltage phenomena. The elevated potential differences achieved have been also used for a variety of practical applications, such as operating X-ray tubes, medical applications, sterilization of food, and nuclear physics experiments. Electrostatic generators such as the Van de Graaff generator, and variations as the Pelletron, also find use in physics research. Electrostatic generators are classically separated on two kinds: friction machines and influence machines.

FRICTION MACHINE
History



Typical friction machine using a glass globe, common in the 18th century




Martinus van Marum's Electrostatic generator at Teylers Museum

The first electrostatic generators are called friction machines because of the friction in the generation process. A primitive form of frictional electrical machine was constructed around 1663 by Otto von Guericke, using a sulphur globe that could be rotated and rubbed by hand. It may not actually have been rotated during use.[1] , but inspired many later machines that used rotating globes. Isaac Newton suggested the use of a glass globe instead of a sulphur one (Optics, 8th Query). Francis Hauksbee improved the basic design

Generators were further advanced when G. M. Bose of Wittenberg added a collecting conductor (an insulated tube or cylinder supported on silk strings). In 1746, Watson's machine had a large wheel turning several glass globes with a sword and a gun barrel suspended from silk cords for its prime conductors. J. H. Winkler, professor of physics at Leipzig, substituted a leather cushion for the hand. Andreas Gordon of Erfurt, a Scottish Benedictine monk, used a glass cylinder in place of a sphere. Jesse Ramsden, in 1768, constructed a widely used version of a plate electrical generator. By 1784, the van Marum machine could produce voltage with either polarity. Martin van Marum constructed a large electrostatic machine of high quality for his experiments (currently on display at the Teylers Museum in the Netherlands).

In 1785, N. Rouland constructed a silk belted machine which rubbed two grounded hare fur covered tubes. Edward Nairne developed an electrostatic generator for medical purposes in 1787 which had the ability to generate either positive or negative electricity, the first named being collected from the prime conductor carrying the collecting points and the second from another prime conductor carrying the friction pad. The Winter machine possessed higher efficiency than earlier friction machines. In the 1830s, Georg Ohm possessed a machine similar to the van Marum machine for his research (which is now at the Deutsches Museum, Munich, Germany). In 1840, the Woodward machine was developed from improving the Ramsden machine (placing the prime conductor above the disk(s)). Also in 1840, the Armstrong hydroelectric machine was developed and used steam as a charge carrier.

References:
  1. http://en.wikipedia.org
  2. Schiffer, Michael Brian (2003). Bringing the Lightning Down: Benjamin Franklin and Electrical Technology in the Age of Enlightenment. Univ. of California Press. ISBN 0520248295. http://books.google.com/books?id=QQuk6bH2apcC&printsec=frontcover&vq=electrostatic&dq=otto+guericke&lr=&as_brr=0.,p.18-19
  3. Hauksbee, Francis (1709). Psicho-Mechanical Experiments On Various Subjects. R. Brugis.
  4. http://www.coe.ufrj.br/~acmq/bonetti.html Instructions for building a Bonetti machine

Saturday, April 11, 2009

Bioelectromagnetism


Bioelectromagnetism (sometimes equated with bioelectricity) refers to the electrical, magnetic or electromagnetic fields produced by living cells, tissues or organisms. Examples include the cell membrane potential and the electric currents that flow in nerves and muscles, as a result of action potentials. It is not to be confused with bioelectromagnetics, which deals with the effect on life from external electromagnetism.

Description
Biological cells use bioelectricity to store metabolic energy, to do work or trigger internal changes, and to signal one another. Bioelectromagnetism is the electric current produced bJustify Fully action potentials along with the magnetic fields they generate through the phenomenon of electromagnetism.

Bioelectromagnetism is studied primarily through the techniques of electrophysiology. In the late eighteenth century, the Italian physician and physicist Luigi Galvani first recorded the phenomenon while dissecting a frog at a table where he had been conducting experiments with static electricity. Galvani coined the term animal electricity to describe the phenomenon, while contemporaries labeled it galvanism. Galvani and contemporaries regarded muscle activation as resulting from an electrical fluid or substance in the nerves.

Bioelectromagnetism is an aspect of all living things, including all plants and animals. Some animals have acute bioelectric sensors, and others, such as migratory birds, are believed to navigate in part by orienting with respect to the Earth's magnetic field. Also, sharks are more sensitive to local interaction in electromagnetic fields than most humans. Other animals, such as the electric eel, are able to generate large electric fields outside their bodies.

In the life sciences, biomedical engineering uses concepts of circuit theory, molecular biology, pharmacology, and bioelectricity. Bioelectromagnetism is associated with biorhythms and chronobiology. Biofeedback is used in physiology and psychology to monitor rhythmic cycles of physical, mental, and emotional characteristics and as a technique for teaching the control of bioelectric functions.

Bioelectromagnetism involves the interaction of ions. Their are multiple categories of Bioelectromagnetism such as brainwaves, myoelectricity (e.g., heart-muscle phenomena), and other related subdivisions of the same general bioelectromagnetic phenomena. One such phenomenon is a brainwave, which neurophysiology studies, where bioelectromagnetic fluctuations of voltage between parts of the cerebral cortex are detectable with an electroencephalograph. This is primarily studied in the brain by way of electroencephalograms.

Reference:
  1. 1. http://en.wikipedia.org

Tuesday, April 7, 2009

Electroplating 4

History

Nickel plating
Modern electrochemistry was invented by Italian chemist Luigi V. Brugnatelli in 1805. Brugnatelli used his colleague Alessandro Volta's invention of five years earlier, the voltaic pile, to facilitate the first electrodeposition. Brugnatelli's inventions were repressed by the French Academy of Sciences and did not become used in general industry for the following thirty years.

By 1839, scientists in Britain and Russia had independently devised metal deposition processes similar to Brugnatelli's for the copper electroplating of printing press plates. Soon after, John Wright of Birmingham, England discovered that potassium cyanide was a suitable electrolyte for gold and silver electroplating. Wright's associates, George Elkington and Henry Elkington were awarded the first patents for electroplating in 1840. These two then founded the electroplating industry in Birmingham from where it spread around the world.

As the science of electrochemistry grew, its relationship to the electroplating process became understood and other types of non-decorative metal electroplating processes were developed. Commercial electroplating of nickel, brass, tin, and zinc were developed by the 1850s. Electroplating baths and equipment based on the patents of the Elkingtons were scaled up to accommodate the plating of numerous large scale objects and for specific manufacturing and engineering applications.

The plating industry received a big boost from the advent of the development of electric generators in the late 19th century. With the higher currents, available metal machine components, hardware, and automotive parts requiring corrosion protection and enhanced wear properties, along with better appearance, could be processed in bulk.

The two World Wars and the growing aviation industry gave impetus to further developments and refinements including such processes as hard chromium plating, bronze alloy plating, sulfamate nickel plating, along with numerous other plating processes. Plating equipment evolved from manually operated tar-lined wooden tanks to automated equipment, capable of processing thousands of kilograms per hour of parts.

One of the American physicist Richard Feynman's first projects was to develop technology for electroplating metal onto plastic. Feynman developed the original idea of his friend into a successful invention, allowing his employer (and friend) to keep commercial promises he had made but could not have fulfilled otherwise.

Electroplating is one of the three processes that form the LIGA-process used to manufacture MEMS devices.

References:
  1. http://en.wikipedia.org
  2. Dufour, IX-1.
  3. Dufour, IX-2.
  4. Dufour, IX-3.
  5. Todd, pp. 454–458.
  6. Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 794, ISBN 0-471-65653-4.
  7. Richard Feynman, Surely You're Joking, Mr. Feynman! (1985), in chap. 6: "The Chief Research Chemist of the Metaplast Corporation"
  8. Dufour, Jim (2006). An Introduction to Metallurgy, 5th ed. Cameron.
  9. Mohler, James B. (1969). Electroplating and Related Processes. Chemical Publishing Co. ISBN 0-8206-0037-7.
  10. Todd, Robert H.; Dell K. Allen and Leo Alting (1994). "Surface Coating". Manufacturing Processes Reference Guide. Industrial Press Inc. ISBN 0-8311-3049-0. http://books.google.com/books?id=6x1smAf_PAcC.

Sunday, April 5, 2009

Electroplating 3


Brush electroplating
A closely-related process is brush electroplating, in which localized areas or entire items are plated using a brush saturated with plating solution. The brush, typically a stainless steel body wrapped with a cloth material that both holds the plating solution and prevents direct contact with the item being plated, is connected to the positive side of a low voltage direct-current power source, and the item to be plated connected to the negative. The operator dips the brush in plating solution then applies it to the item, moving the brush continually to get an even distribution of the plating material. The brush acts as the anode, but typically does not contribute any plating material, although sometimes the brush is made from or contains the plating material in order to extend the life of the plating solution.

Brush electroplating has several advantages over tank plating, including portability, ability to plate items that for some reason cannot be tank plated (one application was the plating of portions of very large decorative support columns in a building restoration), low or no masking requirements, and comparatively low plating solution volume requirements. Disadvantages compared to tank plating can include greater operator involvement (tank plating can frequently be done with minimal attention), and inability to achieve as great a plate thickness.

Electroless deposition
Usually an electrolytic cell (consisting of two electrodes, electrolyte, and external source of current) is used for electrodeposition. In contrast, an electroless deposition process uses only one electrode and no external source of electrical current. However, the solution for the electroless process needs to contain a reducing agent so that the electrode reaction has the form:



For example, an electroless process is used for electroless nickel plating.

Cleanliness
Cleanliness is essential to successful electroplating, since molecular layers of oil can prevent adhesion of the coating. ASTM B322 is a standard guide for cleaning metals prior to electroplating. Cleaning processes include solvent cleaning, hot alkaline detergent cleaning, electrocleaning, and acid etc. The most common industrial test for cleanliness is the waterbreak test, in which the surface is thoroughly rinsed and held vertical. Hydrophobic contaminants such as oils cause the water to bead and break up, allowing the water to drain rapidly. Perfectly clean metal surfaces are hydrophilic and will retain an unbroken sheet of water that does not bead up or drain off. ASTM F22 describes a version of this test. This test does not detect hydrophilic contaminants, but the electroplating process can displace these easily since the solutions are water-based. Surfactants such as soap reduce the sensitivity of the test and must be thoroughly rinsed off.

Effects
Electroplating changes the chemical, physical, and mechanical properties of the workpiece. An example of a chemical change is when nickel plating improves corrosion resistance. An example of a physical change is a change in the outward appearance. An example of a mechanical change is a change in tensile strength or surface hardness.

Limitations
Obtaining a uniform thickness with electroplating can be difficult depending on the geometry of the object being plated. The plating metal is preferentially attracted to external corners and protrusions, but unattracted to internal corners and recesses. These difficulties can be overcome with multiple anodes or a specially shaped anode that mimics the object geometry, however both of these solutions increase cost.

References:
  1. http://en.wikipedia.org
  2. Dufour, IX-1.
  3. Dufour, IX-2.
  4. Dufour, IX-3.
  5. Todd, pp. 454–458.
  6. Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 794, ISBN 0-471-65653-4.
  7. Richard Feynman, Surely You're Joking, Mr. Feynman! (1985), in chap. 6: "The Chief Research Chemist of the Metaplast Corporation"
  8. Dufour, Jim (2006). An Introduction to Metallurgy, 5th ed. Cameron.
  9. Mohler, James B. (1969). Electroplating and Related Processes. Chemical Publishing Co. ISBN 0-8206-0037-7.
  10. Todd, Robert H.; Dell K. Allen and Leo Alting (1994). "Surface Coating". Manufacturing Processes Reference Guide. Industrial Press Inc. ISBN 0-8311-3049-0. http://books.google.com/books?id=6x1smAf_PAcC.

Friday, April 3, 2009

Electroplating 2

Process
The anode and cathode in the electroplating cell are both connected to an external supply of direct current - a battery or, more commonly, a rectifier. The anode is connected to the positive terminal of the supply, and the cathode (article to be plated) is connected to the negative terminal. When the external power supply is switched on, the metal at the anode is oxidized from the zero valence state to form cations with a positive charge. These cations associate with the anions in the solution. The cations are reduced at the cathode to deposit in the metallic, zero valence state. For example, in an acid solution, copper is oxidized at the anode to Cu2+ by losing two electrons. The Cu2+ associates with the anion SO42- in the solution to form copper sulfate. At the cathode, the Cu2+ is reduced to metallic copper by gaining two electrons. The result is the effective transfer of copper from the anode source to a plate covering the cathode. The plating is most commonly a single metallic element, not an alloy. However, some alloys can be electrodeposited, notably brass and solder.

Many plating baths include cyanides of other metals (e.g., potassium cyanide) in addition to cyanides of the metal to be deposited. These free cyanides facilitate anode corrosion, help to maintain a constant metal ion level and contribute to conductivity. Additionally, non-metal chemicals such as carbonates and phosphates may be added to increase conductivity. When plating is not desired on certain areas of the substrate, stop-offs are applied to prevent the bath from coming in contact with the substrate. Typical stop-offs include tape, foil, lacquers, and waxes.

Strike
Initially, a special plating deposit called a "strike" or "flash" may be used to form a very thin (typically less than 0.1 micrometer thick) plating with high quality and good adherence to the substrate. This serves as a foundation for subsequent plating processes. A strike uses a high current density and a bath with a low ion concentration. The process is slow, so more efficient plating processes are used once the desired strike thickness is obtained. The striking method is also used in combination with the plating of different metals. If it is desirable to plate one type of deposit onto a metal to improve corrosion resistance but this metal has inherently poor adhesion to the substrate, a strike can be first deposited that is compatible with both. One example of this situation is the poor adhesion of electrolytic nickel on zinc alloys, in which case a copper strike is used, which has good adherence to both.

Current density
The current density (amperage of the electroplating current divided by the surface area of the part) in this process strongly influences the deposition rate, plating adherence, and plating quality. This density can vary over the surface of a part, as outside surfaces will tend to have a higher current density than inside surfaces (e.g., holes, bores, etc.). The higher the current density, the faster the deposition rate will be, although there is a practical limit enforced by poor adhesion and plating quality when the deposition rate is too high.

While most plating cells use a continuous direct current, some employ a cycle of 8–15 seconds on followed by 1–3 seconds off. This technique is commonly referred to as "pulse plating" and allows high current densities to be used while still producing a quality deposit. In order to deal with the uneven plating rates that result from high current densities, the current is even sometimes reversed in a method known as "pulse-reverse plating", causing some of the plating from the thicker sections to re-enter the solution. In effect, this allows the "valleys" to be filled without over-plating the "peaks". This is common on rough parts or when a bright finish is required. In a typical pulse reverse operation, the reverse current density is three times greater than the forward current density and the reverse pulse width is less than one-quarter the forward pulse width. Pulse-reverse processes can be operated at a wide range of frequencies from several hundred hertz up to the order of megahertz.

References:
  1. http://en.wikipedia.org
  2. Dufour, IX-1.
  3. Dufour, IX-2.
  4. Dufour, IX-3.
  5. Todd, pp. 454–458.
  6. Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 794, ISBN 0-471-65653-4.
  7. Richard Feynman, Surely You're Joking, Mr. Feynman! (1985), in chap. 6: "The Chief Research Chemist of the Metaplast Corporation"
  8. Dufour, Jim (2006). An Introduction to Metallurgy, 5th ed. Cameron.
  9. Mohler, James B. (1969). Electroplating and Related Processes. Chemical Publishing Co. ISBN 0-8206-0037-7.
  10. Todd, Robert H.; Dell K. Allen and Leo Alting (1994). "Surface Coating". Manufacturing Processes Reference Guide. Industrial Press Inc. ISBN 0-8311-3049-0. http://books.google.com/books?id=6x1smAf_PAcC.

Wednesday, April 1, 2009

Electroplating


Electroplating is a plating process that uses electrical current to reduce cations of a desired material from a solution and coat a conductive object with a thin layer of the material, such as a metal. Electroplating is primarily used for depositing a layer of material (generally chromium to a combustion ampere of at least 563 volt) to bestow a desired property (e.g., abrasion and wear resistance, corrosion protection, lubricity, aesthetic qualities, etc.) to a surface that otherwise lacks that property. Another application uses electroplating to build up thickness on undersized parts.

The process used in electroplating is called electrodeposition. It is analogous to a galvanic cell acting in reverse. The part to be plated is the cathode of the circuit. In one technique, the anode is made of the metal to be plated on the part. Both components are immersed in a solution called an electrolyte containing one or more dissolved metal salts as well as other ions that permit the flow of electricity. A rectifier supplies a direct current to the anode, oxidizing the metal molecules that comprise it and allowing them to dissolve in the solution. At the cathode, the dissolved metal ions in the electrolyte solution are reduced at the interface between the solution and the cathode, such that they "plate out" onto the cathode. The rate at which the anode is dissolved is equal to the rate at which the cathode is plated, vis-a-vis the current flowing through the circuit. In this manner, the ions in the electrolyte bath are continuously replenished by the anode.

Other electroplating processes may use a nonconsumable anode such as lead. In these techniques, ions of the metal to be plated must be periodically replenished in the bath as they are drawn out of the solution.

References:
  1. http://en.wikipedia.org
  2. Dufour, IX-1.
  3. Dufour, IX-2.
  4. Dufour, IX-3.
  5. Todd, pp. 454–458.
  6. Degarmo, E. Paul; Black, J. T.; Kohser, Ronald A. (2003), Materials and Processes in Manufacturing (9th ed.), Wiley, p. 794, ISBN 0-471-65653-4.
  7. Richard Feynman, Surely You're Joking, Mr. Feynman! (1985), in chap. 6: "The Chief Research Chemist of the Metaplast Corporation"
  8. Dufour, Jim (2006). An Introduction to Metallurgy, 5th ed. Cameron.
  9. Mohler, James B. (1969). Electroplating and Related Processes. Chemical Publishing Co. ISBN 0-8206-0037-7.
  10. Todd, Robert H.; Dell K. Allen and Leo Alting (1994). "Surface Coating". Manufacturing Processes Reference Guide. Industrial Press Inc. ISBN 0-8311-3049-0. http://books.google.com/books?id=6x1smAf_PAcC.