Lightning
Natural static discharge
Lightning is a dramatic natural example of static discharge. While the details are unclear and remain the subject of debate, the initial charge separation is thought to be associated with contact between ice particles within storm clouds. In general, significant charge accumulations can only persist in regions of low electrical conductivity (very few charges free to move in the surroundings), hence the flow of neutralizing charges often results from neutral atoms and molecules in the air being torn apart to form separate positive and negative charges which then travel in opposite directions as an electric current, neutralizing the original accumulation of charge. The static charge in air typically breaks down in this way at around 30,000 volts-per-centimeter (30 kV/cm) depending on humidity. The discharge superheats the surrounding air causing the bright flash, and produces a shockwave causing the clicking sound. The lightning bolt is simply a scaled up version of the sparks seen in more domestic occurrences of static discharge. The flash occurs because the air in the discharge channel is heated to such a high temperature that it emits light by incandescence. The clap of thunder is the result of the shock wave created as the superheated air expands explosively.
References:
- http://en.wikipedia.org
- "Franklin's Kite". http://www.mos.org/sln/toe/kite.html. Retrieved on 2008-02-19.
- Krider, E. Philip (January 2006). "Benjamin Franklin and Lightning Rods". Physics Today. http://www.physicstoday.org/vol-59/iss-1/p42.html. Retrieved on 2008-04-06.
- J. J. Lowke (1992). "Theory of electrical breakdown in air". Journal of Physics D: Applied Physics 25: 202–210. doi:10.1088/0022-3727/25/2/012. http://www.iop.org/EJ/article/0022-3727/25/2/012/jd920212.pdf?request-id=XIfZw4zI3BGDoxCz2wi7Kg.
- Kassebaum, J. H. and Kocken, R. A. (1995). "Controlling Static Electricity in Hazardous (Classified) Locations". Petroleum and Chemical Industry 42nd Annual Conference Papers: 105–113. http://ieeexplore.ieee.org/iel3/4013/11530/00523945.pdf?tp=&arnumber=523945&isnumber=11530.
- Wagner, John P.; Clavijo, Fernando Rangel [doi:10.1016/S0304-3886(00)00019-X Electrostatic charge generation during impeller mixing of used transformer oil] Department of Nuclear Engineering, Safety Engineering and Industrial Hygiene Program, Texas A&M University, College Station, online 21 August 2000; accessed Jan 2009
- Hearn, Graham (1998). "Static electricity: concern in the pharmaceutical industry?". Pharmaceutical Science & Technology Today 1 (7): 286–287. doi:10.1016/S1461-5347(98)00078-9.
- Egorov, V.N. Electrification of petroleum fuels Khimiya i Tekhnologiya Topliv i Masel, No. 4, pp. 20–25, April, 1970 accessed Dec 2008
- Chevron Corporation Aviation Fuels Technical Review 2006, accessed Dec 2008
- Hearn, Graham Static electricity - guidance for Plant Engineers - Wolfson Electrostatics University of Southampton 2002; accessed Dec 2008
- Kinzing, G.E., 'Electrostatic Effects in Pneumatic Transport: Assessment, Magnitudes and Future Direction', Journal Pipelines, 4, 95-102, 1984
- "Snopes.com: Fuelish Pleasures". http://www.snopes.com/autos/hazards/gasvapor.asp. Retrieved on 2008-04-19.
- "NASA - Crackling Planets". http://science.nasa.gov/headlines/y2005/10aug_crackling.htm. Retrieved on 2008-01-20.
- "Kids science projects". http://www.creativekidsathome.com/science/staticelectricity.html. Retrieved on 2008-01-20.
- H. Yasuro, H. Makoto and I. Isao (2007). "Charging of Adhesive Tapes on Peeling". Journal of the Adhesion Society of Japan 43 (3): 97–103. http://sciencelinks.jp/j-east/article/200706/000020070607A0223458.php.
- "3M Material Safety Data Sheet". http://multimedia.mmm.com/mws/mediawebserver?BBBBBBXeXgc1ZGXFEqZswKKgRmpBWHcbKGcByi5--. Retrieved on 2008-01-20.